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finite element method
formulation (FEM) is- a~plied to rotationally symmetric coaxial

waveguides, in which the dependence of the dominant TEM
mode on the radius of the cylindrical coordinate system is

explicitly taken into account in the basis functions. In this way,
a physically appropriate approximation of the unknown field

distribution is achieved. After scaling, the resulting sparse matrix

equation is solved iteratively by using the biconjugate gradient
method (BCG). The numerical results show excellent agreement
with results of the mode matching technique (MMT). Compared
with the conventional FEM formulation, this method yields a
significant improvement in accuracy within the frequency range

where the TEM mode dominates.

I. INTRODUCTION

T

HE COAXIAL transmission line is one of the most

frequently used waveguides for transporting electromag-

netic energy within the microwave range. While the theory

of the homogeneous line is well established, discontinuities

and inhomogeneous coaxial waveguides still require some

attention. The efforts date back as early as 1944, when

Whinnery and co-workers studied discontinuities in coaxial

waveguides with the mode matching technique [1]. Recently,

these problems were tackled with purely numerical methods, e.

g. the finite-difference time-domain (FDTD) [2] and the finite

element method (FEM) ([3]–[5]). Satisfactory results can be

achieved with these methods.

In the following, an efficient FEM formulation is introduced

for solving rotationally symmetric coaxial waveguide prob-

lems. In contrast to the conventional FEM formulation, where

a transformation of the unknown field distribution is utilized

in order to eliminate the quasi-singular term in the variational

formulation, we try to include maximal available knowledge

about the unknown field distribution already in the Ansatz. The

basis functions are chosen to take explicitly into account the

quasi-singular behavior of the dominant TEM-mode in coaxial

waveguides. In this way, the unknown field distribution can

appropriately be approximated. As a result, this formulation

leads to a more efficient solution than the conventional one.

Similar approaches have already found wide application

with approximate solutions of Maxwell’s equations. For ex-

ample, special basis functions are used in the FEM to enforce

the edge condition [6]. In the asymptotic analysis of the field

distribution in the neighborhood of a caustic, an expansion

including the Airy function and its derivative, which appear
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in the asymptotic expansion of the exact solution of the corre-

sponding canonical problem, has also proven advantageous [7,

Ch. 3]. The work reported here was encouraged by the authors’

experience with a similar method, which has successfully

been applied to the quality factor optimization of coaxial

resonators [8]. While entire-domain basis functions were used

in that former study, owing to their flexibility sub-domain basis

functions will be utilized in this paper.

In Section 11, our approach is described in some detail. For

the purpose of comparison the conventional formulation is

given as well. Numerical results are presented in Section 111

together with results from the conventional FEM formulation.

All numerical results are validated by using a mode matching

program developed at our institute several years ago [9].

Finally, the paper is summarized in Section IV.

11. FINfTE ELEMENT FORMULATION

The geometry of a rotationally symmetric inhomogeneous

coaxial waveguide transition, e. g. a connector between two

homogeneous coaxial waveguides, is depicted in Fig. 1. The

z-axis of the circular cylindrical coordinate system (r, p, Z) is

chosen to coincide with the axis of the coaxial waveguide. The

region Q in the m-plane is bounded by its boundary r, which

consists of the walls of the transition r. and the apertures

of the two homogeneous waveguides rl and r2. In a source

free region, the first two time-harmonic

are given below

curl H = jucE,

curl E = –.ju~H,

where E (H) is the electric (magnetic)

Maxwell equations

(1)

(2)

field strength. Per-

mittivity c and permeability L can both be complex and

position-dependent in the region of interest Q. w = 2r f
is the angular frequency. The harmonic time factor e~‘t is

suppressed in the rest of this paper.

Scalar-multiplying the equation which results after eliminat-
ing the electric field strength E from (1) with the help of (2),

with a vectorial weighting function TV, and then integrating

the resulting equation in a source free volume, where Q is

the cross section of this volume with a half plane p = const.,

yields

/ Jcurl H . curl W
;jwpH . WrdS + rdS

Q c1 ‘jw&

—
/

ii . (E X W)rdl = O;
r

(3)
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r

Fig. 1. Geometry of a rotationally symmetric inhomogeneous coaxial wave-
guide

In the above derivation, the relation div (Ax B) = B curl A–

A. curl B is already taken into account. 6 is the inward normal

vector of the boundary 17.

A similar equation can be derived for the electric field

strength E in an analogous way. But (3) will be prefered in

this paper, due to the simple form of the resulting equation,

as shown in what follows.

In (3) there are two unknown functions, namely E and H.

But the unknown E appears in the integral over the boundary

17 only. Clearly, other conditions, e. g. boundary conditions

must be considered in order to make (3) solvable.

On I’o, the walls of the waveguide, which are assumed to be

perfectly conducting in this study, the tangential components

of the electric field must disappear. Owing to rotational

symmetry, the only existing component of the magnetic field

strength in the circular cylindrical coordinate system is H =

Hp @, where @ is the unit vector of coordinate p. With this

in mind and with the logical choice W = lVp$, (3) can be

simplified to

Equation (1) yields:

E=
(

curl (Hp@) 1 aHw .
=— —

)
=7- + ::(rq)~ . (5)

jwe J’wc

In addition, the following relations on the aperture 171with
z = ,Z1 (< Z2) exist:

(9)

For the aperture 172 with z = zz

Hp = H;, (11)

(12)

k, is the wavenumber on aperture ri (i = 1, 2). It is assumed

that apertures 171 and 17a are so distant to the inhomogeneity,

that all higher order modes are heavily attenuated and hence

can be negleted. This advantageous way of incorporating the

boundary conditions on apertures of homogeneous waveguides

is due to Williamson, Lee and Mittra [4].

With the help of the above equations, (4) can be further

simplified to

Evidently, the ~ term appears in the integrand of the above.
equation. It is ex~ctly this term which makes the construction

of triangular finite element universal matrices impossible. To

avoid this, the following substitution is made [10]:

Hp = Oh, (14)

W9 = Jfiw. (15)

This transforms (13) into

--+--)+’x!~+wa+~kd/ [(1 z ah aw ah aw

‘r azaz ararQJw&

which is applied to axisymmetrical coaxial discontinuity prob-

lems in [3]-[5]. ,

Clearly, the term ~ now no longer exists and the position-

independent matrice~ result with the exception of the integral

at the right hand side of (16), albeit this integral can be

evaluated analytically. But unfortunately this transformation

has no physical meaning: in a region including the axis, it leads

to solutions containing the term fi near the axis, as pointed

out by Daly [11]. He proposed an alternative substitution

instead, which gives physically appropriate solutions in regions

including the axis. But for coaxial problems, where the axis

is not included, both these substitutions are not suitable [8]:

it is well known that the radial dependence of all the field

components of the TEM mode in a homogeneous $oaxial

waveguide is given exactly by the quasi-singular term ~ [12].

Even for p-independent higher order E-modes, whi~h will

normally be excited with the problems under investigation,.

there exists Hp N : for r -+ O . This relation can be verified
r
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easily by applying the limiting forms of the Bessel functions

for small values of the argument [13, p. 513] to the exact

expressions of the corresponding modes [12, pp. 72–80].

In order to obtain a physically meaningful solution, it seems

appropriate to introduce an alternative substitution where the

r-dependence of the TEM mode in a homogeneous coaxial

waveguide is taken into account explicitly, namely [8],

h = rHv, (17)

w = 7’WW. (18)

From the above considerations, the final equation for the

numerical calculation takes the following form

(19)

The construction of position-independent universal matric-

es is not possible with this formulation. Its application is

warranted by the clear physical meaning of the Ansatz and

the achieved high accuracy of the numerical results (see the

following section), though. Additionally, position independent

universal matrices do not exist in general, if isoparametric

elements [14] are used, as is done in this paper.

In the application of this substitution to the quality factor

optimization of coaxial resonators [8], high order polynomials

were used as entire-domain basis functions. This choice is

especially suitable for convex or slightly concave regions

[15], [16]. The assumption is justified by the resulting optimal

shape of coaxial resonators [8]. Contraty, sub-domain basis

functions. namely the isoparametric elements are used in this

paper, because more complex regions can be treated efficiently

and the numerically resulting linear dependence in case of

entire-domain basis functions can completely be eliminated

[17].

In this study, linear and quadratic triangular and quadrilat-

eral isoparametric elements are used. Inside each element, the

unknown function h is substituted by a series of polynomial

interpolation functions together with the unknown values of

the function h at some nodes. The weighting function is

chosen to be identical with the interpolation function (Galerkin

method).

All the integrals are evaluated numerically by using Gaus-

sian quadrature [18]. Due to the symmetry of the element

matrix, only half of the entries are stored using the so called

clique storage [19]. After scaling, the resulting matrix equation

is solved iteratively by utilizing the biconjugate gradient

method [20]. The symmetry of the resulting matrix leads to a

much faster convergence than the conjugate gradient method.

In the following section, this formulation will be compared

with the conventional FEM formulation and with an available

program COAXIAL which was developed at our institute by

using the standard mode matching technique [9].

1o“ E

:~
o 50 100 150 200 250 300 360

Number of Unknowns

Fig. 2. Relative error of the dominant resonant frequency calculated by using

different formulations and different discretization ( ❑— ❑— ❑: linear
quadrilaterals / new FEM; 0—0— O: quadratic quadrilaterals/ new FEM;

b—A—A: linear quadrilaterals / conventional FEM: V—V—V quadratic
quadrilaterals / conventional FEM)

111. NUMERICAL EXAMPLES

For the following numerical calculations utilizing the two

FEM formulations discussed above, the same mesh discretiza-

tion is used for each example. For the calculation of matrix

elements, Gaussian quadrature of identical accuracy are used

in both cases. A comparison between (16) and (19) shows that

the numerical implementation of the former is clearly more

expensive than that of the latter. Owing to the absence of the
1— term, the matrix elements of (16) can be calculated more

~ccurately than the matrix elements in (19). If the biconjugate

gradient method is used to solve the resulting matrix equation,

a comparable number of iterations is necessary for both the

conventional and the one proposed in this paper for a given

accuracy of the residuum.

A. Coaxial Resonators

The first example to be considered is a coaxial resonator. It

consists of a homogeneous coaxial waveguide short-circuited

at both ends. The resonance frequencies of this kind of

resonator can be determined analytically. Owing to this fac-

tor, this kind of resonators is very suitable for comparison
purposes.

The coaxial resonator to be dealt with has a radius of the

outer conductor of 0.23 m and a radius of the inner conductor

of 0.1 m. The length of the resonator is 0.52 m. Its geom-

etry is discretized with linear and quadratic quadrilaterals.

The relative error of the numerical results of the eigenvalue

corresponding to the dominant mode is depicted in Fig. 2, as

a function of the number of unknowns and as a function of

the order of the used elements.

As expected, the efficient formulation is clearly superior to

the conventional one. This fact can be observed by the first

few eigenvalues. The well known fact that higher accuracy
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Fig. 3. Reflection coefficient (a) and power balance (b) of a coaxial waveguide with incident TEM mode at one end (
new FEM; 0— 0—0: 128 quadratic triangles / new FEM; A—A—A: 512 linear triangles / conventional FEM;

/ conventional FEM)

can be achieved by using higher order elements is confirmed

in that figure as well.

B. Coaxial Waveguide

The second example treats a coaxial waveguide with the

same dimension as the resonator in example 1. But here the

two ends are terminated with the characteristic impedance of
the waveguide and a TEM mode is incident from one end.

For the discretization linear and quadratic triangular elements

are utilized.

Fig. 3 depicts the amplitude of the reflection coefficient and

the power balance as a function of the frequency. In reality,

no reflection exists. Due to the inability to describe the TEM

D— L ❑ : 512 linear triangles /

17-v-v: 128 quadratic triangles

mode properly, the results of the conventional formulation are

not very satisfactory. The superiority of the efficient FEM

formulation to the conventional one is demonstrated again.

C. Compensated Dielectric Support

The above examples are analytically solvable and the exact

waves are strict transverse electromagnetic (TEM). As a result,
the superiority of the new FEM formulation to the conven-

tional one is expected. But can this advantage be retained for

more complex geometries? This question will be answered

now by the application of the two FEM formulations to

a compensated dielectric support. Its geometry is shown in

the insert of Fig. 4 and is discretized by using linear and



414 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 43. NO. 2. FEBRUARY 1995

0.020

r

Frequency (GHz)

Fig.4. Reflection coefficient ofacompensated dielectric support fora6Ofl

coaxial line with D = 10 mm, b = 1 mm, d = 0.1Z25D and the relative

permittivity c, = 2.55 ( : 2624 quadratic quadrilaterals / new

FEM:–-–––: mode matching technique with 20modes; ———: 2624

quadratic quadrilaterals /conventional FEM)

quadratic quadrilaterals. While this problem cannot be solved

analytically, the mode matching technique [21 ] can be applied

very conveniently.

Owing to the fact that as many mode functions as necessary

can be included in the mode matching technique, this method

is clearly far superior to both FEM formulations mentioned

in this paper, where they are applicable. At the same time,

an unavoidable disadvantage of the semi-analytical methods

is evident: only a limited number of problems can be solved.

To begin with, this example is firstly solved with the mode

matching technique, by using the program COAXIAL [9].

Twenty modes are included to achieve numerical convergence.

Then the geometry of this example is discretized by utilizing

2624 (t?161 unknowns) quadratic quadrilaterals. The numer-

ical results of the efficient FEM formulation is shown in

Fig. 4 as well. To achieve comparable accuracy, 10496 linear

quadrilaterals with 10785 unknowns must be used in the new

formulation. A very good agreement between these results can

be observed. The results of the conventional formulation with

2624 second order quadrilaterals are also given in Fig. 4. From

0.1 to about 4 GHz, this result deviates evidently from the

other ones.

D. Optimal Trcrnsition

Similar deviations can be observed in another example,

which consists of an optimal transition between two coaxial

waveguides with different geometrical dimensions but the

same characteristic impedance (60 fl).

The mode matching technique is applicable to this geometry

(Fig. 5). Again 20 modes are used. The geometry is descritized

in 2460 quadratic quadrilaterals with 7679 unknowns. While

the numerical results of the new FEM formulation agree

very well with that of the mode matching technique, the

numerical results of the conventional FEM show a clear devi-

ation from the other two results (Fig. 5). The large difference
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Fig. 5. Reflection coefficient of an optimal transition between two 60 Q

coaxial hnes with D = 10 mm, D1 = 3.623 mm and 1 = 0.129D

( : 2460 quadratic quadrilaterals / new FEM; – – – – –: mode

matching technique with 20 modes; — — —: 2460 quadratic quadrilaterals
/ conventional FEM)

observed in this example is probably due to the presence of

the high impedance coaxial waveguide between the two 60 Q

ones.

The last two examples were calculated by using the FDTD

method as given in [2]. The results there show a clear

similarity with the ones presented in this paper by using

the mode matching technique and the new FEM. A possible

explanation for the existing deviation between the FDTD and

the results reported here could stem from the relatively coarse

descritization used in [2].

IV. CONCLUSION

A physically appropriate, and as a result, computationally

efficient finite element formulation is introduced in this paper

to solve rotationally symmetric coaxial waveguide disconti-

nuities or transitions. Compared with the conventional finite

element method, the new formulation results in evidently

higher accuracy and demands less computation time. This is

expected, because the principal behavior of the field distribu-

tion in such waveguides is already described properly in the

Ansatz. In some sense, this formulation has some similarities

with the well known model problem method in the asymptotic
anatysis of high frequency diffraction problems.

The advantages of this formulation are demonstrated with

the help of several examples. The numerical results have been

verified by exact results, where possible, and by numerical

results of a mode matching technique program. In cases where

the mode matching technique is applicable, this method should

preferably be used compared with purely numerical methods,

to which the proposed formulation in this paper belongs as

well. But for more complex problems, such as continuous

transitions, or if the losses of the waveguide walls are to be

considered, then purely numerical methods must be utilized

instead. It is always desirable and sometimes possible to make
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purely numerical methods more efficient, as shown in this

paper.

This idea can be incorporated into the numerical calculation

of similar problems as well, e. g., the calculation of non-

circular coaxial waveguides. It will be an interesting task to

improve the efficiency of other numerical methods by using

similar ideas.
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