410 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 43, NO. 2. FEBRUARY 1995

An Efficient FEM Formulation for
Rotationally Symmetric Coaxial Waveguides
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Abstract— In this paper, an efficient finite element method
formulation (FEM) is applied to rotationally symmetric coaxial
waveguides, in which the dependence of the dominant TEM
mode on the radius of the cylindrical coordinate system is
explicitly taken into account in the basis functions. In this way,
a physically appropriate approximation of the unknown field
distribution is achieved. After scaling, the resulting sparse matrix
equation is solved iteratively by using the biconjugate gradient
method (BCG). The numerical results show excellent agreement
with results of the mode matching technique (MMT). Compared
with the conventional FEM formulation, this method yields a
significant improvement in accuracy within the frequency range
where the TEM mode dominates.

I. INTRODUCTION

HE COAXIAL transmission line is one of the most

frequently used waveguides for transporting electromag-
netic energy within the microwave range. While the theory
of the homogeneous line is well established, discontinuities
and inhomogeneous coaxial waveguides still require some
attention. The efforts date back as carly as 1944, when
Whinnery and co-workers studied discontinuities in coaxial
waveguides with the mode matching technique [1]. Recently,
these problems were tackled with purely numerical methods, e.
¢. the finite-difference time-domain (FDTD) [2] and the finite
element method (FEM) ([3]-[5]). Satisfactory results can be
achieved with these methods.

In the following, an efficient FEM formulation is introduced
for solving rotationally symmetric coaxial waveguide prob-
lems. In contrast to the conventional FEM formulation, where
a transformation of the unknown field distribution is utilized
in order to eliminate the quasi-singular term in the variational
formulation, we try to include maximal available knowledge
about the unknown field distribution already in the Ansatz. The
basis functions are chosen to take explicitly into account the
quasi-singular behavior of the dominant TEM-mode in coaxial
waveguides. In this way, the unknown field distribution can
appropriately be approximated. As a result, this formulation
leads to a more efficient solution than the conventional one.

Similar approaches have already found wide application
with approximate solutions of Maxwell’s equations. For ex-
ample, special basis functions are used in the FEM to enforce
the edge condition [6]. In the asymptotic analysis of the field
distribution in the neighborhood of a caustic, an expansion
including the Airy function and its derivative, which appear
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in the asymptotic expansion of the exact solution of the corre-
sponding canonical problem, has also proven advantageous [7,
Ch. 3]. The work reported here was encouraged by the authors’
experience with a similar method, which has successfully
been applied to the quality factor optimization of coaxial
resonators [8]. While entire-domain basis functions were used
in that former study, owing to their flexibility sub-domain basis
functions will be utilized in this paper.

In Section 11, our approach is described in some detail. For
the purpose of comparison the conventional formulation is
given as well. Numerical results are presented in Section III
together with results from the conventional FEM formulation.
All numerical results are validated by using a mode matching
program developed at our institute several years ago [9].
Finally, the paper is summarized in Section IV.

II. FINITE ELEMENT FORMULATION

The geometry of a rotationally symmetric inhomogeneous
coaxial waveguide transition, e. g. a connector between two
homogeneous coaxial waveguides, is depicted in Fig. 1. The
z-axis of the circular cylindrical coordinate system (r, ¢, z) is
chosen to coincide with the axis of the coaxial waveguide. The
region {2 in the zr-plane is bounded by its boundary T, which
consists of the walls of the transition I'y and the apertures
of the two homogeneous waveguides I'; and T's. In a source
free region, the first two time-harmonic Maxwell equations
are given below

curl H = jweE, 1)
curl E = —jwuH, 2

where E (H) is the electric (magnetic) field strength. Per-
mittivity € and permeability x4 can both be complex and
position-dependent in the region of interest Q. w = 2rnf
is the angular frequency. The harmonic time factor ¢’*t is
suppressed in the rest of this paper.

Scalar-multiplying the equation which results after eliminat-
ing the electric field strength E from (1) with the help of (2),
with a vectorial weighting function W, and then integrating
the resulting equation in a source free volume, where ) is
the cross section of this volume with a half plane ¢ = const.,

yields
/jw,uH WrdS +/ curl H.~ curl WrdS
Q Q Jwe
~/ﬁ‘(E><W)7*dl:0; 3)
r
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Fig. 1.
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Geometry of a rotationally symmetric inhomogeneous coaxial wave-

In the above derivation, the relation div (AxB) = B-curl A—
A -curl B is already taken into account. 7 is the inward normal
vector of the boundary I

A similar equation can be derived for the electric field
strength E in an analogous way. But (3) will be prefered in
this paper, due to the simple form of the resulting equation,
as shown in what follows.

In (3) there are two unknown functions, namely E and H.
But the unknown E appears in the integral over the boundary
I" only. Clearly, other conditions, e. g. boundary conditions
must be considered in order to make (3) solvable.

On I'y, the walls of the waveguide, which are assumed to be
perfectly conducting in this study, the tangential components
of the electric field must disappear. Owing to rotational
symmetry, the only existing component of the magnetic field
strength in the circular cylindrical coordinate system is H =
H,p, where ¢ is the unit vector of coordinate . With this
in mind and with the logical choice W = W,¢, (3) can be
simplified to

5 - curl 5
/jw,uHLprprdrdz +/ curl (H‘PQD), curl (Wy9) rdrdz
Q Q Jwe
2
- 2/ A - (B x (W,@))rdl = 0 @)
=171

Equation (1) yields:

oH,

_cwl (Hyop) 1 L, 10 .
E= . =—{~3, T+7"3T(TH‘P)Z . ®

Jwe Jwe

In addition, the following relations on the aperture I'; with
z = 21 (< 2g) exist:

=2, (6)
H, = H, + H}, N
OH?
Y _ ik ) 8
az ] 1Hcp7 ( )
OH?
£ = jliHY; €))

For the aperture I's with z = 25

n=—z 10
H, = H, (1)
0H;
f - s 1
% = ks H (12)

k., is the wavenumber on aperture I'; (¢ = 1, 2). It is assumed
that apertures I'; and I's are so distant to the inhomogeneity,
that all higher order modes are heavily attenuated and hence
can be negleted. This advantageous way of incorporating the
boundary conditions on apertures of homogeneous waveguides
is due to Williamson, Lee and Mittra [4].

With the help of the above equations, (4) can be further
simplified to

/_L 0H, oW,
q jwe| 8z Oz

10 0
+ T—Qg;(rﬂd—g;(rW(P)} rdrdz

+/jaqutLPV[/]prd?"clz+]jl H W, rdr

Q we T

R [ g Wi =25 [ HiW,rdr (13)
we Jp, 7 e = 2 e r, 7 w"

1
Evidently, the — term appears in the integrand of the above

T .
equation. It is exactly this term which makes the construction
of triangular finite element universal matrices impossible. To
avoid this, the following substitution is made [10]:

H,=/rh,
WSP = \/?'w.

This transforms (13) into
qjwe| \0z 9z 0Or dr) 2\ Or or 4
+/jwm~2hwdrdz -+ ﬁ1—/ r2hwdr
Q r,

we
+@/ rzhwdmzk—l/ H (V1 ) wdr. (16)
Iy we r

(14
5)

we

which is applied to axisymmetrical coaxial discontinuity prob-
lems in [3]-[5].

Clearly, the term — now no Jonger exists and the position-
independent matricesr result with the exception of the integral
at the right hand side of (16), albeit this integral can be
evaluated analytically. But unfortunately this transformation
has no physical meaning: in a region including the axis, it leads
to solutions containing the term \/r near the axis, as pointed
out by Daly [11]. He proposed an alternative substitution
instead, which gives physically appropriate solutions in regions
including the axis. But for coaxial problems, where the axis
is not included, both these substitutions are not suitable [8]:
it is well known that the radial dependence of all the field
components of the TEM mode in a homogeneous coaxial

waveguide is given exactly by the quasi-singular term — [12].

Even for y-independent higher order E-modes, which will
normally be excited with the problems under investigation,

. 1 . . .
there exists H,, ~ — for  — 0 . This relation can be verified
r



easily by applying the limiting forms of the Bessel functions
for small values of the argument [13. p. 513] to the exact
expressions of the corresponding modes [12, pp. 72-80].

In order to obtain a physically meaningful solution, it seems
appropriate to introduce an alternative substitution where the
r-dependence of the TEM mode in a homogeneous coaxial
waveguide is taken into account explicitly, namely [8],

A7)
(18)

From the above considerations, the final equation for the
numerical calculation takes the following form

/ jwphw + 1 (ok 6w+%@ ldrdz

Q Jn jwe\ 0z 0z Oror)|r

hwldr—l— ﬁ hwldr: 21@/ H;wdr.
T T I

we Jr, we

L
We Iy

(19)

The construction of position-independent universal matri-
ces is not possible with this formulation. Its application is
warranted by the clear physical meaning of the Ansatz and
the achieved high accuracy of the numerical results (see the
following section), though. Additionally, position independent
universal matrices do not exist in general, if isoparametric
elements [14] are used, as is done in this paper.

In the application of this substitution to the quality factor
optimization of coaxial resonators [8], high order polynomials
were used as entire-domain basis functions. This choice is
especially suitable for convex or slightly concave regions
[15], [16]. The assumption is justified by the resulting optimal
shape of coaxial resonators [8]. Contrary, sub-domain basis
functions. namely the isoparametric elements are used in this
paper. because more complex regions can be treated efficiently
and the numerically resulting linear dependence in case of
entire-domain basis functions can completely be eliminated
[17].

In this study, linear and quadratic triangular and quadrilat-
eral isoparametric elements are used. Inside each element, the
unknown function h is substituted by a series of polynomial
interpolation functions together with the unknown values of
the function h at some nodes. The weighting function is
chosen to be identical with the interpolation function (Galerkin
method).

All the integrals are evaluated numerically by using Gaus-
sian quadrature [18]. Due to the symmetry of the element
matrix, only half of the entries are stored using the so called
clique storage [19]. After scaling, the resulting matrix equation
is solved iteratively by utilizing the biconjugate gradient
method [20]. The symmetry of the resulting matrix leads to a
much faster convergence than the conjugate gradient method.

In the following section, this formulation will be compared
with the conventional FEM formulation and with an available
program COAXIAL which was developed at our institute by
using the standard mode matching technique [9].
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III. NUMERICAL EXAMPLES

For the following numerical calculations utilizing the two
FEM formulations discussed above, the same mesh discretiza-
tion is used for each example. For the calculation of matrix
elements, Gaussian quadratures of identical accuracy are used
in both cases. A comparison between (16) and (19) shows that
the numerical implementation of the former is clearly more
expensive than that of the latter. Owing to the absence of the

— term, the matrix elements of (16) can be calculated more

gccurately than the matrix elements in (19). If the biconjugate
gradient method is used to solve the resulting matrix equation,
a comparable number of iterations is necessary for both the
conventional and the one proposed in this paper for a given
accuracy of the residuum.

A. Coaxial Resonators

The first example to be considered is a coaxial resonator. It
consists of a homogeneous coaxial waveguide short-circuited
at both ends. The resonance frequencies of this kind of
resonator can be determined analytically. Owing to this fac-
tor, this kind of resonators is very suitable for comparison
purposes.

The coaxial resonator to be dealt with has a radius of the
outer conductor of 0.23 m and a radius of the inner conductor
of 0.1 m. The length of the resonator is 0.52 m. Its geom-
etry is discretized with linear and quadratic quadrilaterals.
The relative error of the numerical resuits of the eigenvalue
corresponding to the dominant mode is depicted in Fig. 2, as
a function of the number of unknowns and as a function of
the order of the used elements.

As expected, the efficient formulation is clearly superior to
the conventional one. This fact can be observed by the first
few eigenvalues. The well known fact that higher accuracy
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Fig. 3.

Reflection coefficient (a) and power balance (b) of a coaxial waveguide with incident TEM mode at one end ( (O— [1— [: 512 linear triangles /

new FEM; O— O—Q: 128 quadratic triangles / new FEM; A—A—A: 512 linear triangles / conventional FEM; \7—v/—%7: 128 quadratic triangles

/ conventional FEM)

can be achieved by using higher order elements is confirmed
in that figure as well.

B. Coaxial Waveguide

The second example treats a coaxial waveguide with the
same dimension as the resonator in example 1. But here the
two ends are terminated with the characteristic impedance of
the waveguide and a TEM mode is incident from one end.
For the discretization linear and quadratic triangular elements
are utilized.

Fig. 3 depicts the amplitude of the reflection coefficient and
the power balance as a function of the frequency. In reality,
no reflection exists. Due to the inability to describe the TEM

mode properly, the results of the conventional formulation are
not very satisfactory. The superiority of the efficient FEM
formulation to the conventional one is demonstrated again.

C. Compensated Dielectric Support

The above examples are analytically solvable and the exact
waves are strict transverse electromagnetic (TEM). As a result,
the superiority of the new FEM formulation to the conven-
tional one is expected. But can this advantage be retained for
more complex geometries? This question will be answered
now by the application of the two FEM formulations to
a compensated dielectric support. Its geometry is shown in
the insert of Fig. 4 and is discretized by using linear and
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Fig. 4. Reflection coefficient of a compensated dielectric support for a 60 £
coaxial line with D = 10 mm, b = 1 mm, d = 0.1725D and the relative
permittivity e, = 2.55 ( : 2624 quadratic quadrilaterals / new
FEM: — — - — — : mode matching technique with 20 modes; — — —: 2624
quadratic quadrilaterals / conventional FEM)

quadratic quadrilaterals. While this problem cannot be solved
analytically, the mode matching technique [21] can be applied
very conveniently.

Owing to the fact that as many mode functions as necessary
can be included in the mode matching technique, this method
is clearly far superior to both FEM formulations mentioned
in this paper, where they are applicable. At the same time,
an unavoidable disadvantage of the semi-analytical methods
is evident: only a limited number of problems can be solved.

To begin with, this example is firstly solved with the mode
matching technique, by using the program COAXIAL [9].
Twenty modes are included to achieve numerical convergence.
Then the geometry of this example is discretized by utilizing
2624 (8161 unknowns) quadratic quadrilaterals. The numer-
ical results of the efficient FEM formulation is shown in
Fig. 4 as well. To achieve comparable accuracy, 10496 linear
quadrilaterals with 10785 unknowns must be used in the new
formulation. A very good agreement between these results can
be observed. The results of the conventional formulation with
2624 second order quadrilaterals are also given in Fig. 4. From
0.1 to about 4 GHz, this result deviates evidently from the
other ones.

D. Optimal Transition

Similar deviations can be observed in another example,
which consists of an optimal transition between two coaxial
waveguides with different geometrical dimensions but the
same characteristic impedance (60 2).

The mode matching technique is applicable to this geometry
(Fig. 5). Again 20 modes are used. The geometry is descritized
in 2460 quadratic quadrilaterals with 7679 unknowns. While
the numerical results of the new FEM formulation agree
very well with that of the mode matching technique, the
numerical results of the conventional FEM show a clear devi-
ation from the other two results (Fig. 5). The large difference
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Fig. 5. Reflection coefficient of an optimal transition between two 60 (1

coaxial limes with D = 10 mm. Dy = 3.623 mm and ! = 0.129D
(———————: 2460 quadratic quadrilaterals / new FEM; — - — — — : mode
matching technigue with 20 modes; — — —: 2460 quadratic quadrilaterals

/ conventional FEM)

observed in this example is probably due to the presence of
the high impedance coaxial waveguide between the two 60
ones.

The last two examples were calculated by using the FDTD
method as given in [2]. The results there show a clear
similarity with the ones presented in this paper by using
the mode matching technique and the new FEM. A possible
explanation for the existing deviation between the FDTD and
the results reported here could stem from the relatively coarse
descritization used in [2].

IV. CONCLUSION

A physically appropriate, and as a result, computationally
efficient finite element formulation is introduced in this paper
to solve rotationally symmetric coaxial waveguide disconti-
nuities or transitions. Compared with the conventional finite
element method, the new formulation results in evidently
higher accuracy and demands less computation time. This is
expected, because the principal behavior of the field distribu-
tion in such waveguides is already described properly in the
Ansatz. In some sense, this formulation has some similarities
with the well known model problem method in the asymptotic
analysis of high frequency diffraction problems.

The advantages of this formulation are demonstrated with
the help of several examples. The numerical results have been
verified by exact results, where possible, and by numerical
results of a mode matching technique program. In cases where
the mode matching technique is applicable, this method should
preferably be used compared with purely numerical methods,
to which the proposed formulation in this paper belongs as
well. But for more complex problems, such as continuous
transitions, or if the losses of the waveguide walls are to be
considered, then purely numerical methods must be utilized
instead. It is always desirable and sometimes possible to make
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purely numerical methods more efficient, as shown in this
paper.

This idea can be incorporated into the numerical calculation
of similar problems as well, e. g., the calculation of non-
circular coaxial waveguides. It will be an interesting task to
improve the efficiency of other numerical methods by using
similar ideas.
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